combining like terms

Publish date: 2024-06-17

combining like terms - adding or subtracting the numerical coefficients of like termsConsider the following 15 numbers 1, 2, y - 4, 4, 5, x, 6, 7, 8, y, 9, 10, 12, 3x, 20 - The mean o

Consider the following 15 numbers 1, 2, y - 4, 4, 5, x, 6, 7, 8, y, 9, 10, 12, 3x, 20 - The mean of the last 10 numbers is TWICE the mean of the first 10 numbers - The sum of the last 2 numbers is FIVE times the sum of the first 3 numbers (i) Calculate the values of x and y We're given two equations: [LIST=1] [*](x + 6 + 7 + 8 + y + 9 + 10 + 12 + 3x + 20)/10 = 2(1 + 2 + y - 4 + 4 + 5 + x + 6 + 7 + 8 + y)/10 [*]3x - 20 = 5(1 + 2 + y - 4) [/LIST] Let's evaluate and simplify: [LIST=1] [*](x + 6 + 7 + 8 + y + 9 + 10 + 12 + 3x + 20)/10 = (1 + 2 + y - 4 + 4 + 5 + x + 6 + 7 + 8 + y)/5 [*]3x - 20 = 5(y - 1) [/LIST] Simplify some more: [URL='https://www.mathcelebrity.com/polynomial.php?num=x%2B6%2B7%2B8%2By%2B9%2B10%2B12%2B3x%2B20&pl=Evaluate'](x + 6 + 7 + 8 + y + 9 + 10 + 12 + 3x + 20)/10[/URL] = (4x + y + 72)/10 [URL='https://www.mathcelebrity.com/polynomial.php?num=1%2B2%2By-4%2B4%2B5%2Bx%2B6%2B7%2B8%2By&pl=Evaluate'](1 + 2 + y - 4 + 4 + 5 + x + 6 + 7 + 8 + y)/5[/URL] = (2y + x + 29)/5 5(y - 1) = 5y - 5 So we're left with: [LIST=1] [*](4x + y + 72)/10 = (2y + x + 29)/5 [*]3x - 20 = 5y - 5 [/LIST] Cross multiply equations in 1, we have: 5(4x + y + 72) = 10(2y + x + 29) 20x + 5y + 360 = 20y + 10x + 290 We have: [LIST=1] [*]20x + 5y + 360 = 20y + 10x + 290 [*]3x - 20 = 5y - 5 [/LIST] Combining like terms: [LIST=1] [*]10x - 15y = -70 [*]3x - 5y = 15 [/LIST] Now we have a system of equations which we can solve any of three ways: [LIST] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10x+-+15y+%3D+-70&term2=3x+-+5y+%3D+15&pl=Substitution']Substitution Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10x+-+15y+%3D+-70&term2=3x+-+5y+%3D+15&pl=Elimination']Elimination Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=10x+-+15y+%3D+-70&term2=3x+-+5y+%3D+15&pl=Cramers+Method']Cramer's Rule[/URL] [/LIST] No matter which method we choose, we get the same answer: (x, y) = [B](-115, -72)[/B]

Six Less than the total of three times a number and negative eight

Six Less than the total of three times a number and negative eight. Let's take this in pieces: Three times a number = 3x The total of this and negative eight means we subtract eight 3x - 8 Six Less than this total means we subtract 6 3x - 8 - 6 Simplify by combining like terms: [B]3x - 14[/B]

Stock A is worth 4.5. Stock B is worth 8.0. Stock C is worth 10.0. She purchased half as many shares

Stock A is worth 4.5. Stock B is worth 8.0. Stock C is worth 10.0. She purchased half as many shares of B as A and half as many shares of C as B. If her investments are worth 660, how many shares of each stock does she own? Let s be the number of shares in Stock A. We have: [LIST=1] [*]A: 4.5s [*]B: 8s/2 = 4s [*]C: 10s/4 = 2.5s [/LIST] Value equation: 4.5s + 4s + 2.5s = 660 Combining like terms: 11s = 660 Using the [URL='http://www.mathcelebrity.com/1unk.php?num=11s%3D660&pl=Solve']equation calculator[/URL], we get [B]s = 60[/B] for Stock A Stock B shares is equal to 1/2A = [B]30[/B] Stock C shares is equal to 1/2B = [B]15[/B]

The left and right page numbers of an open book are two consecutive integers whose sum is 403. Find

The left and right page numbers of an open book are two consecutive integers whose sum is 403. Find these page numbers. Page numbers left and right are consecutive integers. So we want to find a number n and n + 1 where: n + n + 1 = 403 Combining like terms, we get: 2n + 1 = 403 Typing that equation into our search engine, we get: [B]n = 201[/B] This is our left hand page. Our right hand page is: 201 + 1 = [B]202[/B]

the sum of 2 times a number and -2, added to 4 times a number

the sum of 2 times a number and -2, added to 4 times a number. The phrase, [I]a number[/I], means an arbitrary variable, let's call it x. 2 times a number 2x The sum of means add, so we add -2, which is the same as subtracting 2 2x - 2 Now, we add 4 times x 2x - 2 + 4x Combining like terms, we have: (2 + 4)x - 2 [B]6x - 2[/B]

The sum of Mr. Adams and Mrs. Benson's age is 55. The difference is 3. What are their ages?

The sum of Mr. Adams and Mrs. Benson's age is 55. The difference is 3. What are their ages? [U]Givens[/U] [LIST] [*]Let Mr. Adam's age be a [*]Let Mrs. Benson's age be b [*]We're given two equations where [I]sum[/I] means we add and [I]difference[/I] means we subtract: [/LIST] [LIST=1] [*]a + b = 55 [*]a - b = 3 [/LIST] Since we have opposite coefficients for b, we can take a shortcut and add equation 1 to equation 2: (a + a) + (b - b) = 55 + 3 Combining like terms and simplifying, we get: 2a = 58 To solve this equation for a, we [URL='https://www.mathcelebrity.com/1unk.php?num=2a%3D58&pl=Solve']type it in our search engine[/URL] and we get: a = [B]29 [/B] If a = 29, then we plug this into equation (1) to get: 29 + b = 55 b = 55 - 29 b = [B]26 [MEDIA=youtube]WwkpNqPvHs8[/MEDIA][/B]

Tina's mom made brownies. When tinas friend came over they ate 1/3 of the brownies. Her sister ate 2

Tina's mom made brownies. When tinas friend came over they ate 1/3 of the brownies. Her sister ate 2 and her dad ate 4. If there are 26 brownies left. How many did her mom make Let b denote the number of brownies Tina's mom made. We're given: b - 1/3b - 2 - 4 = 26 Combining like terms, we have: 2b/3 - 6 = 26 Add 6 to each side, we get: 2b/3 = 32 To solve this equation for b, we [URL='https://www.mathcelebrity.com/prop.php?num1=2b&num2=32&den1=3&den2=1&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our math engine[/URL] and we get: b = [B]48[/B]

two numbers have an average of 2100 and one number is $425 more than the other number. What are the

two numbers have an average of 2100 and one number is $425 more than the other number. What are the numbers Let the first number be x and the second number be y. We're given two equations: [LIST=1] [*](x + y)/2 = 2100 (Average) [*]y = x + 425 [/LIST] Rearrange equation (1) by cross multiplying x + y = 2 * 2100 x + y = 4200 So we have our revised set of equations: [LIST=1] [*]x + y = 4200 [*]y = x + 425 [/LIST] Substituting equation (2) into equation (1) for y, we get: x + (x + 425) = 4200 Combining like terms, we get: 2x + 425 = 4200 Using our [URL='https://www.mathcelebrity.com/1unk.php?num=2x%2B425%3D4200&pl=Solve']equation solver[/URL], we get: x = [B]1887.5[/B] Which means using equation (2), we get y = 1887.5 + 425 y = [B]2312.5[/B]

ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfqLKivsKhZamgoHS%2Bfq%2FOppmippmjtGZ%2Bj6WgpJ1VZ321sdGmqg%3D%3D